Self‐adaptive Processing and Forecasting Algorithm for Univariate Linear Time Series
نویسندگان
چکیده
منابع مشابه
Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کاملDeep Learning Architecture for Univariate Time Series Forecasting
This paper studies the problem of applying machine learning with deep architecture to time series forecasting. While these techniques have shown promise for modeling static data, applying them to sequential data is gaining increasing attention. This paper overviews the particular challenges present in applying Conditional Restricted Boltzmann Machines (CRBM) to univariate time-series forecastin...
متن کاملAn Algorithm Forecasting Time Series Using Wavelet
In this paper we used the technique of wavelets with fuzzy logic to forecast enrollment of Alabama university from 1971 to 1994 where data were taken and analyzed by using wavelets, then logic , and we used the mean square error (MSE) to compare the forecasting results with previous different forecasting methods. The results were acceptable compared with the results of previous research. 1Intro...
متن کاملCombining Artificial Intelligence with Non-linear Data Processing Techniques for Forecasting Exchange Rate Time Series
Combing back-propagation neural network (BPNN) and empirical mode decomposition (EMD) techniques, this study proposes EMD-BPNN model for forecasting. In the first stage, the original exchange rate series were first decomposed into a finite, and often small, number of intrinsic mode functions (IMFs). In the second stage, kernel predictors such as BPNN were constructed for forecasting. Compared w...
متن کاملTools for Non-linear Time Series Forecasting in Economics
The purpose of this study is to contrast the forecasting performance of two non-linear models, a regime-switching vector autoregressive model (RS-VAR) and a recurrent neural network (RNN), to that of a linear benchmark VAR model. Our specific forecasting experiment is UK inflation and we utilize monthly data from 1969-2003. The RS-VAR and the RNN perform approximately on par over both monthly a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Electronics
سال: 2017
ISSN: 1022-4653,2075-5597
DOI: 10.1049/cje.2017.09.027